Version Number Anti-Patterns

published also on DZone 04.2020

After the gang of four (GOF) Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides published the book, Design Patterns: Elements of Reusable Object-Oriented Software, learning how to describe problems and solutions became popular in almost every field in software development. Likewise, learning to describe don’ts and anti-pattern became equally as popular.

In publications that discussed these concepts, we find helpful recommendations for software design, project management, configuration management, and much more. In this article, I will share my experience dealing with version numbers for software artifacts.

Most of us are already familiar with a method called semantic versioning, a powerful and easy-to-learn rule set for how version numbers have to be structured and how the segments should increase.

Version numbering example:

  • Major: Incompatible API changes.
  • Minor: Add new functionality.
  • Patch: Bugfixes and corrections.
  • Label: SNAPSHOT marking the “under development” status.

An incompatible API Change occurs when an externally accessible function or class was deleted or renamed. Another possibility is a change in the signature of a method. This means the return value or parameters has been changed from its original implementation. In these scenarios, it’s necessary to increase the Major segment of the version number. These changes present a high risk for API consumers because they need to adapt their own code.

When dealing with version numbers, it’s also important to know that 1.0.0 and 1.0 are equal. This has effect to the requirement that versions of a software release have to be unique. If not, it’s impossible to distinguish between artifacts. Several times in my professional experience, I was involved in projects where there was no well-defined processes for creating version numbers. The effect of these circumstances was that the team had to secure the quality of the artifact and got confused with which artifact version they were currently dealing with.

The biggest mistake I ever saw was the storage of the version of an artifact in a database together with other configuration entries. The correct procedure should be: place the version inside the artifact in a way that no one after a release can change from outside. The trap you could fall into is the process of how to update the version after a release or installation.

Maybe you have a checklist for all manual activities during a release. But what happens after a release is installed in a testing stage and for some reason another version of the application has to be installed. Are you still aware of changing the version number manually? How do you find out which version is installed or when the information of the database is incorrect?

Detect the correct version in this situation is a very difficult challenge. For that reason, we have the requirement to keep the version inside of the application. In the next step, we will discuss a secure and simple way on how to solve an automatic approach to this problem.

Our precondition is a simple Java library build with Maven. By default, the version number of the artifact is written down in the POM. After the build process, our artifact is created and named like: artifact-1.0.jar or similar. As long we don’t rename the artifact, we have a proper way to distinguish the versions. Even after a rename with a simple trick of packaging and checking, then, in the META-INF folder, we are able to find the correct value.

If you have the Version hardcoded in a property or class file, it would also work fine, as long you don’t forget to always update it. Maybe the branching and merging in SCM systems like Git could need your special attention to always have the correct version in your codebase.

Another solution is using Maven and the token placement mechanism. Before you run to try it out in your IDE, keep in mind that Maven uses to different folders: sources and resources. The token replacement in sources will not work properly. After a first run, your variable is replaced by a fixed number and gone. A second run will fail. To prepare your code for the token replacement, you need to configure Maven as a first in the build lifecycle:

<build>
   <resources>
      <resource>
         <directory>src/main/resources/</directory>
         <filtering>true</filtering>
      </resource>
   </resources>
   <testResources>
      <testResource>
         <directory>src/test/resources/</directory>
         <filtering>true</filtering>
      </testResource>
   </testResources>
</build>
XML

After this step, you need to know the ${project.version} property form the POM. This allows you to create a file with the name version.property in the resources directory. The content of this file is just one line: version=${project.version}. After a build, you find in your artifact the version.property with the same version number you used in your POM. Now, you can write a function to read the file and use this property. You could store the result in a constant for use in your program. That’s all you have to do!

Example: https://github.com/ElmarDott/TP-CORE/blob/master/src/main/java/org/europa/together/utils/Constraints.java

Modern Times (for Configuration Manager)

Heavy motivation to automate everything, even the automation itself, is the common understanding of the most DevOps teams. There seems to be a dire necessity to automate everything – even automation itself. This is common understanding and therefore motivation for most DevOps teams. Let’s have a look on typical Continuous Stupidities during a transformation from a pure Configuration Management to DevOps Engineer.

In my role as Configuration and Release Manager, I saw in close to every project I joined, gaps in the build structure or in the software architecture, I had to fix by optimizing the build jobs. But often you can’t fix symptoms like long running build scripts with just a few clicks. In his post I will give brief introduction about common problems in software projects, you need to overcome before you really think about implementing a DevOps culture.

  1. Build logic can’t fix a broken architecture. A huge amount of SCM merging conflicts occur, because of missing encapsulation of business logic. A function which is spread through many modules or services have a high likelihood that a file will be touched by more than one developer.
  2. The necessity of orchestrated builds is a hint of architectural problems.Transitive dependencies, missing encapsulation and a heavy dependency chain are typical reasons to run into the chicken and egg problem. Design your artifacts as much as possible independent.
  3. Build logic have developed by Developers, not by Administrators. Persons which focused in Operations have different concepts to maintain artifact builds, than a software developer. A good anti pattern example of a build structure is webMethofs of Software AG. They don‘ t provide a repository server like Sonatype Nexus to share dependencies. The build always point to the dependencies inside a webMethods installation. This practice violate the basic idea of build automation, which mentioned in the book book ‚Practices of an Agile Developer‘ from 2006.
  4. Not everything at once. Split up the build jobs to specific goals, like create artifact, run acceptance tests, create API documentation and generate reports. If one of the last steps fail you don’t need to repeat everything. The execution time of the build get dramatically reduced and it is easier to maintain the build infrastructure.
  5. Don’t give to much flexibility to your build infrastructure. This point is strongly related to the first topic I explains. When a build manager have less discipline he will create extremely complex scripts nobody is able to understand. The JavaScript task runner Grunt is a example how a build logic can get messy and unreadable. This is one of the reason, why my favorite build tool for Java projects is always decided to Maven, because it takes governance of understandable builds.
  6. There is no requirement to automate the automation. By definition have complex automation levels higher costs than simple tasks. Always think before, about the benefits you get of your automation activities to see if it make sens to spend time and money for it.
  7. We do what we can, but can we what we do? Or in the words by Gardy Bloch „A fool with a tool is still a fool“. Understand the requirements of your project and decide based on that which tool you choose. If you don’t have the resources even the most professional solution can not support you. If you understood your problem you are be able to learn new professional advanced processes.
  8. Build logic have run first on the local development environment. If your build runs not on your local development machine than don’t call it build logic. It is just a hack. Build logic have to be platform and IDE independent.
  9. Don’t mix up source repositories. The organization of the sources into several folders inside a huge directory, creates just a complex build whiteout any flexibility. Sources should structured by technology or separate independent modules.

Many of the point I mentioned can understood by comparing the current Situation in almost every project. The solution to fix the things in a healthy manner is in the most cases not that complicated. It needs just a bit of attention and well planning. The most important advice I can give is follow the KISS principle. Keep it simple, stupid. This means follow as much as possible the standard process without modifications. You don’t need to reinvent the wheel. There are reasons why a standard becomes to a standard. Here is a short plan you can follow.

  • First: understand the problem.
  • Second: investigate about a standard solution for the process.
  • Third: develop a plan to apply the solution in the existing process landscape. This implies to kick out tools which not support standard processes.

If you follow step by step you own pan, without jumping to more far ten the ext point, you can see quite fast positive results.

By the way. If you think you like to have a guiding to reach a success DevOps process, don’t hesitate to contact me. I offer hands on Consulting and also training to build up a powerful DevOps team.


InPerson (remote) Training’s (Courses) Deutsch / English